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rnSTRACT

FORECASTING WIlli PLANT PROCESS MODELS: A TIME SERIES APPROACH.
II. ANALYSIS, by Keith N. Crank. Statistical Research Divi-
sion. Statistical Reporting Service, U. S. Department of Agri-
culture.

Nonlinear regression and time series models are used to fore-
cast crop components and yields from three plant process
models. The forecasts are not very good. The results show a
dependence of the nonlinear models upon the particular plant
process model employed. Since a large class of nonlinear
models were used, we conclude that these plant process models
do not provide enough information early in the growing season
to forecast crop yields.

[evwords: plant process model. time series, nonlinear model.
forecasting
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SUMMAR Y The theory for the application of nonlinear regression and
time series models for forecasting crop components and yields
~sing outputs from plant process models (PPM's) was developed
in a previous paper([l]). This paper presents an analysis of
those models. Although the results are not impressive, one or
more of these time series models could use data from a PPM to
forecast crop yields.

If PPM's are used by SRS, the time series models presented
here'should be directly compared to other procedures for fore-
casting from PPM's. Therefore, future research on these
models will depend entirely on Agency policies concerning the
use of plant process models for yield forecasting.

In addition the results of this analysis indicate that these
time series models are affected by the choice of PPM. If
further research is to be done on these models, the research
should be directed to a specific PPM. Any such PPM should be
• final version which is considered suitable for Agency use.
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INTRODUCTION

3ACKGROUND

A previous paper ([1]) introduced a set of nonlinear regres-
sion and time series models which could be used to forecast
crop yields from data generated by a plant process model
(PPM). Five possible nonlinear models, two regression and
three time series, were introduced and reasons were given for
considering them. This paper analyzes those five models using
data from three PPM's (CERES MAIZE, SORGF, and SOYGRO).

One reason for using these nonlinear models is to allow fore-
casts to be made using only current year data. This would
prevent year to year changes in weather from influencing crop
forecasts. Earlier papers ([3], [5] ,[6],[7] ,[8] ,[11], [12] ,
[13],[18]) discuss the advantages of within year forecasting
models.

The purpose of this paper is to present some analysis of the
models described in [1]. The ~ackground section briefly
describes these five regression and time series models. A
sixth model is introduced and a justification is given for
dropping the two models which do not have a time series struc-
ture. The Analysis section describes the analysis which was
done on the four remaining models, and presents the results of
the analysis. The Conclusion states the usefulness of these
time series models and mentions future work which may be bene-
ficial. Three Appendices provide some detail which is not
presented in the body of the paper.

Five models are to be compared to determine their ability to
forecast crop yields. Each of the models uses data from a
plant process model (PPM) to fit a regression (usually non-
linear). The parameters from these regressions are then used
for forecasting end of season values for components of the
plant. Some of these components can be used to forecast yield
directly. Others must be used as input to another forecasting
model. Although each of the models is described in [1], a
brief description will also be given here.

Lolistic Growth Model: The first model is the logistic growth
model. This model has the functional form
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where wet) represents the weight of a plant part on day t, and
a, p, and p are parameters to be estimated. The parameter Q
is of major interest since it represents the weight of the
plant part at the end of the season.

Gompertz Model: The second model is the Gompertz .odel. This
has the functional form

where, as before, W(t) represents the weiaht of the plant part
on day t, and a, p, and p are model par&meters. The parameter
a has the same interpretation as before and is of primary
interest. The parameters p and p may have different interpre-
tations, but are not used explicitly in a forecast: hence
their values do not present a problem.

Loaistic Time Series: Each of these models can be written in
terms of previous day's values (that is, as a time series).
For the logistic model the functional form becomes

wet) = aW(t-l)
(l-p)W(t-l)+pa'

where W(t-I) is the weight on the previous day and everything
else is as before.

Gom~ertz Time Series: The Gompertz model, when written as a
time series, has the form

In both of the time series representations the parameter p has
disappeared. Thus only two parameters instead of three need to
be estimated. Also, a still has the same interpretation as
before.

Transformed Gom~ertz Time Series: The last model introduced in
[1] is obtained by taking the log of both sides of the Gom-
pertz Time Series model. The effect of taking loas is to pro-
duce a linear model instead of a nonlinear one.

where L(t) and L(t-l) represent the logs of Wet) and W(t-I)
respectively, PO=(I-p)Ln(a), and PI=P.

When these models were fit to the data for an entire season,
the variances of the residuals appeared to increase in time
except for the transformed Gompertz time series model. For
this .odel the variance of the residuals appeared to decrease
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ANALYSIS

with time. In linear regression these variances can often be
made more uniform by a power transformation. This transforma-
tion was done for the Gompertz time series model using a power
of 1/2, and improved the plots of the residuals against time.
This sixth model is derived in Appendix A.

Data was available from three plant process models (PPM's).
For the CERES MAIZE model documented in [4] there were ten
different datasets each with four variables. For the soybean
model SOYGRO described in [17] there were only two datasets
each with two variables. SORGF,the sorghum model detailed in
[10], had eight datasets with two variables.

All of the models except the square root transformation of the
Gompertz time series were run for each of the variables for
the entire season of data. For the nonlinear models this was
done using PROC NLIN in SAS. The linear model was fit using
PROC REG. Five output datasets were created, one for each
model. Each of these output datasets was run through PROC
ARI~lA to test for autocorrelation of the residuals. The
results are shown in table 1. The numbers in table 1 indicate
the degree of an autoregressive model which would have to be
fit to the residuals in order to eliminate autocorrelation.
The abbreviation DNC indicates that the parameter estimates
did not converge in PROC NLIN.

The results indicate that the logistic and the Gompertz models
would be much worse than the other models either because they
failed to converge or because the problem of autocorrelation
is much worse than for the time series models. Thus these two
models were dropped from further analysis. For the other
models, since some autocorrelation was still present, an addi-
tional term was fit to the data to try to eliminate this prob-
lem. The details of the modified models are presented in
Appendix B. Although the amount of autocorrelation was not
the same for each model and each variable, the modified models
only attempted to eliminate the first order autoregressive
term. For the rest of this paper any references to a model
will mean the modified form of that model.

The four remaining models were then compared in terms of their
convergence properties. This was done by running the models
using data only up to a certain point in time. This allowed
us to determine which models could be used in early season
forecasts, and also allowed us to find out which variables
could be forecast. Thus for this part of the analysis, com-
parisons were made separately for each variable within a set
of data for a given PPM.

Since the values for the grain component of the PPM's are zero
until late in the season, it is not possible to use t~ese
models directly in estimating yield. However, these models
can be used to estimate a maximum value for other plant com-
ponents, and these estimated values can be used in another

3
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Table 1a: The order of an autoregressive model which would have to be fit
to the residuals to ilimiuate autocorrelation by dataset and model tech-
nique for CERES MAIZE.

Variable Dataset Logistic Logistic Gompertz Gompertz Transformed
Model Time Mod.el Time Gompertz

Series Series Time Series

leafwt 1 3 2 3 2 0
2 2 1 DNC 1 4
3 2 1 3 4 0
4 4 3 4 3 3
5 2 1 DNC 2 0
6 2 2 3 2 4
7 2 1 2 1 0
8 5 5 DNC 4 2
9 3 2 DNC 2 0

10 4 3 4 3 2

stemwt 1 3 2 3 2 2
2 2 1 2 1 1
3 2 1 2 1 1
4 4 3 4 3 4
5 2 1 2 1 5
6 2 2 2 2 1
7 2 1 2 1 1
8 3 2 3 2 4
9 3 2 3 2 4

10 2 1 2 1 3

earwt 1 DNC 1 DNC 2 0
2 DNC 1 2 1 1
3 DNC 3 3 2 2
4 DNC 2 DNC 3 0
5 DNC 3 2 1 0
6 2 4 DNC 2 4
7 2 2 DNC 2 0
8 2 3 2 1 0
9 2 0 DNC 3 0

10 DNC 2 DNC 1 0

grainwt 1 DNC 1 DNC 1 1
2 1 1 DNC 1 1
3 DNC 1 DNC 1 1
4 DNC 1 2 1 0
5 DNC 1 DNC 1 1
6 DNC 1 2 1 1
7 DNC 1 2 1 1
8 1 1 DNC 1 1
9 DNC 1 DNC 1 1

10 2 1 DNC 1 1

1 DNC indicates that the parameter estimates did not converge using PROC
NLIN.
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Table Ib: The order of an autoregressive model which would have to be fit
to the residuals to eliminate autocorrelation by dataset and model tech-
nique for SORGF.

Variable Dataset Logistic Lo gistic Gompertz Gompertz Transformed
Mode I Time Model Time Gompertz

Series Series Time Series

grain 1 3 2 DNC 0 0
2 2 2 DNC 0 0
3 2 1 DNC 1 1
4 DNC 1 DNC 0 0
5 DNC 1 DNC 1 0
6 DNC 1 DNC 1 1
7 DNC 1 DNC 0 0
8 2 1 DNC 1 1

total 1 3 2 4 1 3
4 3 2 3 1 3
3 2 1 3 1 3
4 3 2 4 1 3
5 5 4 5 1 2
6 6 5 6 5 3
7 5 4 5 2 3
8 3 2 3 2 4

Table lc: Tbe order of an autoregressive model which would have to be fit
to the residualf to eliminate autocorrelation by dataset and model tech-
nique for SOYGRO.

Variable Dataset Logistic Logistic Gompertz Gompertz Transformed
Model Time Model Time Gompertz

Series Series Time Series

topwt 1 3 1 3 1 2
2 3 2 3 1 1

seewt 1 3 1 DNC 1 1
2 3 1 DNC 1 1

1 DNC indicates that the parameter estimates did not converge using PROC
NLIN.
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type of model for forecasting yield. In our datasets regres-
sion models were created to forecast yield from the maximum
value of these other components (stemwt for CERES MAIZE and
total for SOYGRO). The forecasts made in this manner are
identified in the tables and in the later discussion.

Since the same datasets are used both for estimating the
parameters in the linear regression and for forecasting from
those regression models, it could be argued that for the early
dates this analysis is a test of goodness of fit rather than a
test of the models. The author feels that this is not a prob-
lem for two reasons. First, this analysis is not designed to
be a test of the model, only a preliminary study to see if the
approach is feasible. Second, the independent variable which
is used in the linear regression is a forecast rather than the
actual value which was used to create the regression.

Tables two and three are only for the CERES MAIZE model and
SORGF. With only two data sets the results for SOYGRO would
be hard to interpret. However, for completeness, these
results are presented in Appendix C.

The dates for CERES MAIZE indicate the last date for which
data was used in making the forecast. For SORGF the headings
denote the number of days from planting when the forecasts
were made. Although it would have been preferable to treat
the SORGF data in the same manner as the CERES MAIZE data. the
actual dates were not available.

Table two shows the amount of autocorrelation left after the
modified models were run. The numbers in table two are the
number of samples for which the Q-statistic of Ljung and Box
described in [9] is significant at an a level of .10 either up
to lag 6 or up to lag 12. The Q statistic tests for lack of
fit. If the statistic is significant the specified model may
be inappropriate. In the CERES MAIZE model all of the August
1 and August 15 forecasts come from a regression of maximum
stemwt on final grainwt. For SORGF all of the estimates at 70
days come from a regression of maximum total on final grain.
Thus the entries for those columns are the same for both vari-
ables.

Table three shows the mean squared errors for three forecast
dates and for the entire season. These 'are expressed as a
percent of the true mean. The calculations were obtained as
f 011ow s • Le t

Ii = true value as obtained the PPM,

Xi = forecast of Xi' and

I = mean of Xi'
Then the mean squared error of the forecasts is
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Table 2a: The number of samples from the CERES MAIZE model in which the
Q-statistic of Ljung and Box was significant at an a level of .10 up to
lag 6 or lag 12.

Variable

stemwt

grainwt

Model

Logistic
Time
Ser ie~

Gompertz
Time
Series

Transformed
GOlipertz
Time Series

Square Root
Gomperh
Time Series
Logistic
Time
Series

Gompertz
Time
Series

Transformed
Gompe rtz
Time Series

Square Root
Gompe rh
Time Series

August 1

2

2

5

o

2

2

5

o

August 15

3

3

9

1

3

3

9

1

September 1

1

o

3

2

o

o

o

1

Final

o

o

o

2

o

o

o

1

The data in the box comes from forecasting grainwt from the forecast of
maximUIII stelllYtusing a linear regression model. The slope of the regres-
sion is .82 and the intercept is 3.35. Their standard errors are .17 and
14.4 respectively. The adjusted R-square for this model is .69.
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Table 2b: The number of samples from the SORGF model in which the Q-
statistic of Ljung and BOI was significant at an a level of .10 up to lag
6 or lag 12.

Variable

total

grain

Model

Logistic
T"ime
Series

Gompe rtz
Time
Series

Transformed
Gompertz
Time Series

Square Root
Gompertz
Time Series
Logistic
Time
Series

Gompertz
Time
Series

Transformed
Gompertz
Time Series

Square Root
Gompertz
Time Series

70 days

6

6

8

6

6

6

8

6

80 day s

5

5

8

6

2

2

5

4

90 days

7

5

10

9

3

3

4

4

Final

6

4

10

9

o

o

o

o

The data in the box comes from forecasting grain from the forecast of max-
imum total using a linear regression model. The slope of the regression
is .25 and the intercept is 12.3. Their standard errors are .05 and 6.53
respectively. The adjusted R-square for this model is .69.
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Table 3a: Root mean squared errors for CERES MAIZE (as a' of the mean).
The numbers in parentheses are the mean and standard deviation of the ten
aamples used in the analysis.

Variable

stemwt
(84.2,25)

grainwt
(74.0,24)

Model

Logistic
Time
Seri~s

Gomptrtz
Time
Series

Transformed
Gompertz
Time Series

Square Root
Gompertz
Time Series
Logistic
Time
Serie s

Gompertz
Time
Series

Transformed
Gomper tz
Time Series

Square Root
Gompertz
Time Series

August 1

16

55

20

25

17

49

26

26

Augus t 15

6

15

10

15

9

13

16

14

September 1

8

9

10

7

26

39

22

33

Final

9

9

11

7

6

18

18

19

The data in the box comes from forecasting grainwt from the forecast· of
maximum atemwt using a linear regression model. The alope of the regres-
sion ia .82 and the intercept is 3.35. Their standard errOrs are .17 and
14.4 respectively. The adjusted R-square for this model is .69.
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Table 3b: Root mean squared errors for SORGF <as a 'of the mean). The
numbers in parentheses are the standard deviation of the eight samples
used in the analysis.

Variable

total
( 95 .6 ,10 )

grain
(38.0,16)

Model

Logistic
rime
Series

Gompe rt:r;
Tille
Series

Transformed
Gompertz
Tille Series

Square Root
Gompertz
Time Series
Logistic
Time
Series

Gompertz
Time
Series

Transformed
Gompertz
Time Series

Square Root
Gompertz
Tille Series

70 days

28

16

46

13

26

17

28

17

80 days

16

12

40

12

.24

16

26

18

90 days

11

21

36

IS

12

8

17

8

Final

19

41

31

23

8

12

4

6

The data in the box cOlles from forecasting Irain from the forecast of max-
imum total using a linear relression model. The slope of the regression
is .25 and the intercept is 12.3. Their standard errors are .05 and 6.53
respectively. The adjusted R-square for this model is .69.
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MSE(x)

Conclusion

In 2= -l(X.-X.) •
nl 1 1

The values in the table are MS~(x). Also shown in the table
are the mean (X), and the stanlard errOr of X divided by X.

Comparing the four models to each other using tables 2 and 3.
it appears that the transformed Gompertz time series model is
the worst of the four. It has generally higher mean squared
errors and a larger problem with autocorrelation than the
other models. As was mentioned earlier it also has a problem
with unequal residual variances. The Gompertz time series
model is also a poor model. Although it appears to do well at
times, it is not much better than at least one of the other
models at those times. On the other hand when it does poorly,
it is often much worse than the other models.

When the mean squared err£rs in table 3 are compared to the
standard deviation of X, the results are inconsistent. The
time series models seem to do reasonably well for the SORGF
variable grain 90 days after planting and for the CERES MAIZE
variable stemwt on August 15 and on September 1. However.
these models never do well for the SORGF variable total or for
the CERES MAIZE variable grainwt. (The August 15 forecasts for
grainwt actually come from the forecasts of stemwt.)

It should be noted here that the CERES MAIZE model does not
use this type of model for grain fill. Instead this PPM uses
a line.r grain fill formula which is extrapolated at either
end. This linear formula corresponds to the middle of the
growth curve where the growth is approximately linear. The
extrapolation is used to account for the small growth at
either end of the curve. Our attempt to fit a nonlinear model
to a linear function probably contributed to the poor results
in forecasting grainwt in this model.

The results of this analysis are not impressive. However,
these models do seem to be a viable method of forecasting if a
plant process model is developed which provides an accurate
description of plant growth under actual field conditions.
Future research with these models is dependent on such a plant
proce ss mode 1.

The results of the CERES MAIZE analysis indicate that the use-
fulness of any of these models for forecasting is extremely
dependent on the structure of the plant process model. This
means no more research on these models should be done unless
it deals with a specific model which is to be tested for
Agency use.
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APPENDIX A In linear regression it is often useful to male a power
transfor.ation of the data to reduce the problem of heteros-
cedasticity of the residuals. If this is done to the Gompertz
time series model (TSGOM), we get the following results:

lJ(t) = a(!(~-I)]p

['f( t) 1~ e [«[1'( ~-1>1"r
_ a)'[!(~I)]p).

p

= a). [we:;l) ).]
Xaking the substitution

and letting aI=a)., we obtain
p

yet) = a [Y(t-l)]
1 a1

which is the same).for. as the original model.
our forecast is a instead of a.

However, now

APPENDIX B When autocorrelation exists in the residuals from a regres-
sion, the parameter estimates .ay not be consistent. This
.eans that no matter how much data is available, the parameter
estimates .ay not be close to their true values. Since the
parameter estimates are used in forecasting, this is a major
problem with these .odels. However, this problem can be
corrected by fitting a different .odel to the data. The pur-
pose of this Appendix is to show by an example how this is
done, and to explain the effect of fitting a different .odel
on the forecasts.

Ye will begin first with an example
.odel to re.ove autocorrelation.
series .odel

of how to correct the
Consider the Gompertz time

Suppose this .odel is fit to some data and the residuals show
an autocorrelation structure. For the purposes of this exam-
ple we will assume the residuals can be modeled as an AR(I)
time series. Define
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Wet) ar( ~I)]P •

Let

e(t) = 1f(t)-i(t).

Then

~(t) = Te(t-I) + aCt).

where T is the autoregressive parameters from the time series.
and aCt) is a white noise process (that is. aCt) is a process
having mean 1ero and constant variance. and which is uncorre-
lated for distinct values of t). Then we can consider the new
model

yet) = i(t)+e(t)

= i(t)+ye(t-l) + aCt)

= a~(~I)]P+ye(t-l) + a(t).

= a ~( t;1>]P +y [we t-l)-a [I(t;2}]pl+ a(t).

When we fit this model (estimating the parameters a. P. and
T). the residuals should be uncorrelated. Thus the parameter
estimates will be consistent and will be useful for forecast-
ing. However. since we have changed the model. we must ask
what effect this has on our interpretation of the parameter a.
The answer fortunately. is nothing. The parameter a still
represents the limiting value of Wet) for large t. This can
be shown as follows. Let z be the limiting value of yet).
Then

I = limY(t)
t-)oa

~~dap'(',;"ll] P+y(1J(t-1 l -. P'( ',;"2 l]p)

or

This can only happen if either T=l or :- [;]p. In the 1atter

15



APPENDIX C

case wc have x=a as desired. Unfortunately, the first case
cannot be eliminated entirely. For an AR(I) time series the
condition y=1 corresponds to a process which is nonstationary
(that is, differencing of the data is desired). If this is
the situation, then any forecast for the limiting value of
Y(t) .ill be con.istent .ith the data.

~: A. in the previous paper, we are assu.ing that Y(t) has
a limit for large t, and that a(t) becomes ••all for large t.
As was mentioned in the previous paper, this violates the
a.sumption of equality of variance., but we .ill assume that
this is not a problem in the range of the data that we are
using for forecasting.

These are the results from fitting the .odels to the data from
SOYGRO. Since there were only two data .ets, no conclusions
can be .ade as to the ability of the models to forecast. This
table is presented only for completeness.

Variable Model Actual Oct. 1 Oct. 16 Nov. 1 Final

Logistic
938.121Topwt (78) Time 984.56 972.48 1019.97 1006.41

Series

Gompertz:
1649.391 1242.301 1067.161Time 984 •56 1156.83

Series

Transformed
1255.611 11 S4 .901Gompertz: 984.56 1321.95 1296 .11

Tille Series

Square Root
1138.571Gompertz: 984.56 1745.67 13 84.01 1253.26

Time Series
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Logistic
36.251 156.511 1032.081 1012 .061Topwt (80) Time 990 .14

Series

Gomper t:r;
1172.581 1072.901Time 990 .1 4 1551.97 1236.23

Ser ie s

Transformed
1260.651Gomper t:r; 990.14 1583.45 1454.92 1368.21

Time· Series

Square Root
1252.631 1135.941Gomper t:I: 990.14 1658.98 1358.93

Time Series

Logistic
NED2Seell't (78) Time 427.32 256.17 106.27 436.25

Series

Gomper tz
Time 427.32 NED 382.24 494 .12 457.03
Series

Transformed
Gompertz 427.32 NED 301.75 431.44 445.78
Time Series

Square Root
Gompertz 427.32 NED 326.15 471. 80 456.85
Time Series

Logistic
93 .601Suwt(80) Time 434.13 NED 198.40 442.30

Series

Gomper tz
376.311Time 434.13 NED 543 •75 461.22

Series

Transformed
456.621Gompertz 434.13 NED 338.78 455.91

Time Series

Square Root
385 .83 1Gompertz. 434.13 NED 533.42 468.82

Time Series

1
is significant at an a-level of .10 either up to lag 6Box', o-,tati,tic

or up to hg 12.
2 .

not enough data to fit the regressions on this date for thisThere was
variable •
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